ELTN-Workshop

Praxisteil: Dragino-Paket mit Sensoren, Nodes und Gateway "von 0 auf 100"

Einrichtung TTN-Webseite: Account, Gateway, Application, Node

- 1 Im Browser auf <u>https://www.thethingsnetwork.org</u> gehen
- 2 Account einrichten
 - 1 Signup
 - 2 Username, Mailadresse, Passwort eingeben
 - 3 Create Account
 - 4 Validierungsmail abrufen, in der Mail Activate Account anklicken
 - $5 \rightarrow$ Webseite: Welcome back ...
- 3 Gateway einrichten
 - 1 CONSOLE anklicken
 - 2 register gateway anklicken, Formular REGISTER GATEWAY erscheint
 - 3 Seriennummer des Gateways ermitteln: Auf dem Typenschild steht als MAC-Adresse "wifi: A8:40:41:xx:xx:xx" – die letzten sechs Hex-Ziffern sind die Seriennummer xxxxxx.
 - 4 I'm using the legacy packet forwarder \rightarrow aktivieren
 - 5 darüber erscheint jetzt Gateway EUI → 6 Bytes der WiFi-MAC-Adresse vom Typenschild + FF FF eingeben, also a84041xxxxxffff
 - 6 Description \rightarrow Beschreibung eingeben
 - 7 Frequency Plan → Europe 868 MHz
 - 8 Router \rightarrow bleibt auf ttn-router-eu
 - 9 Location → auf Karte auswählen
 - 10 Antenna Placement \rightarrow indoor
 - 11 Register Gateway anklicken
 - 12 Gateway Overview erscheint
- 4 Application einrichten (falls nicht Zugriff auf eine vorhandene Application erteilt wurde)
 - 1 Applications anklicken
 - 2 add application
 - 3 Application ID \rightarrow Identifier nach Wahl
 - 4 Description \rightarrow Beschreibung
 - 5 Handler \rightarrow ttn-handler-eu
 - 6 Add application anklicken
 - 7 Übersicht APPLICATIONS erscheint, neue Applikation ist mit aufgelistet
- 5 Nodes (Devices) einrichten
 - 1 gewünschte Applikation anklicken, Overview erscheint
 - 2 register device anklicken
 - 3 Device ID \rightarrow Identifier nach Wahl, z.B. dragino-01-node0

- 4 Device EUI \rightarrow Pfeil-Icon anklicken, ändert sich zu Stift-Icon + this field will be generated
- 5 Register anklicken
- 6 Device Overview erscheint
- 7 Settings anklicken
- 8 Activation Method → auf ABP ändern (LG01 unterstützt kein OTAA!)
- 9 Frame Counter Checks → deaktivieren
- 10 Save anklicken
- 11 Device Overview erscheint
- 12 Werte notieren / speichern für Sketch: Network Session Key, App Session Key, Device Address
 - 1 Augen-Icon anklicken, Key wird angezeigt
 - 2 "<>"-Icon anklicken, Key wird als C-Datenstruktur (msb) angezeigt
 - 3 Copy-Icon anklicken, Key wird in Pastebuffer kopiert
- 13 Zweites Devices ebenso einrichten, z.B. dragino-01-node1

Einrichtung LoRaWAN-Gateway Dragino LG01 für lokales WLAN

- 1 Anschließen:
 - 1 LoRa-Stummelantenne (Wichtig!!! LoRa-Geräte **niemals** ohne Antenne betreiben!)

2 Netzteil

- 2 Mit Computer ins WLAN-Netzwerk dragino-xxxxxx verbinden, kein Passwort oder Passwort dragino-dragino.
- 3 Im Browser auf 10.130.1.1 oder dragino-xxxxxx.local gehen, Username root, Passwort dragino → Login
- 4 Statusübersicht erscheint
- 5 Menü Network
- 6 Abschnitt Internet Access: Access Internet Via → WiFi Client
- 7 Ausfüllen:
 - 1 SSID \rightarrow Name des vorhandenen WLAN-Netzwerks (Freifunk)
 - 2 Encryption \rightarrow z.B. WPA2 (None)
 - 3 Password \rightarrow Passwort des WLAN-Netzwerks (leer lassen)
 - 4 Way to Get IP \rightarrow DHCP
 - 5 Display Net Connection: nicht ändern
- 8 Save & Apply
- 9 "Applying changes"...
- 10 Mit Computer in das WLAN gehen, das soeben eingetragen wurde (Freifunk). Dragino-Router erscheint als Gerät "dragino-xxxxx".
- 11 Im Browser auf dragino-xxxxxx.local gehen, anmelden
- 12 Statusübersicht erscheint, IPv4 WAN Status zeigt Verbindung ins WLAN.
- 13 Firmwareversion prüfen: 4.3.4 erforderlich, ggf.
 - 1 <u>http://www.dragino.com/downloads/index.php?</u> <u>dir=motherboards/ms14/Firmware/IoT/</u>

- 2 → IoT-build-v4.3.4-... herunterladen → .bin-Datei im Downloadordner
- 3 Menüoption System → Backup / Flash Firmware anklicken
- 4 Flash new firmware image:
 - 1 Keep settings \rightarrow aktiv lassen
 - 2 Image: Choose File anklicken → .bin-Datei aus dem Downloadordner auswählen
 - 3 Flash image... anklicken (Datei wird hochgeladen, dauert eine Weile)
 - 4 Proceed anklicken (Update beginnt, dauert ebenfalls eine Weile)
 - 5 Während des Updates blinkt die 1. LED, dann folgt ein Reset, bei dem alle LEDs kurz aufleuchten
- 5 Im Browser neu verbinden + wieder anmelden
- 6 Statusübersicht erscheint, Firmwareversion entspricht jetzt der hochgeladenen Version.
- 14 Passwort ändern:
 - 1 Menüoption System \rightarrow Administration
 - 2 Password + Confirmation: jeweils das neue Passwort angeben
 - 3 Save & Apply

Einrichtung TTN-Setup im Gateway

- 1 Im Browser <u>http://www.dragino.com/downloads/index.php?</u> <u>dir=motherboards/lg01/sketch/</u> aufrufen
- 2 Download der Datei single_pkt_fwd_v003.ino.hex
- 3 Im Browser Weboberfläche des Routers aufrufen
- 4 Menüoption Sensor → Flash MCU anklicken
- 5 Upload Image to MCU:
 - 1 MCUImage: Choose File anklicken → Datei aus Downloadordner auswählen
 - 2 Flash Image... anklicken (Programmierung beginnt, dauert eine Weile)
- 6 Upload Result: ... Sketch uploaded successfully.
- 7 Reboot des Gateways (z.B. System \rightarrow Reboot)
- 8 Nach Reboot: Weboberfläche aufrufen, anmelden
- 9 Menüoption Sensor → MicroController
- 10 prüfen: MCU Version = Dateiname der hochgeladenen Datei
- 11 Menüoption Sensor → LoRa / LoRaWAN anklicken
- 12 LoRa Gateway Settings:
 - 1 Radio Settings:
 - 1 TX Frequency → 868100000 (= 868.1 MHz)
 - 2 RX Frequency → 868100000 (= 868.1 MHz)
 - 3 Rest bleibt
 - 2 LoRaWAN Server Settings:
 - 1 Server Address \rightarrow router.eu.thethings.network
 - 2 Server Port \rightarrow bleibt auf 1700
 - 3 Gateway ID \rightarrow Gateway EUI eintragen wie zuvor auf TTN

registriert (<u>ohne</u> Präfix EUI-)

- 3 Save & Apply
- 13 Menüoption Sensor \rightarrow IoT Server anklicken
- 14 Select IoT Server:
 - 1 IoT Server \rightarrow LoRaWAN
 - 2 Save & Apply

 \Rightarrow evtl. Problem? — Status \rightarrow System log:

Sat Oct 13 12:40:39 2018 kern.notice syslog: [IoT]: Internet Connection Check: FAIL

Sat Oct 13 12:40:40 2018 kern.notice syslog: [IoT]: DNS Resolve Check: FAIL

Aber: auf TTN Console \rightarrow Gateways \rightarrow eui-a84041xxxxxxffff: Gateway Status "connected"

Einrichtung Arduino IDE

- 1 Download von <u>https://www.arduino.cc/en/Main/Software</u> aktuell 1.8.7, rechts passende Hardwareplattform auswählen (Windows / macOS / Linux)
- 2 Installieren
- 3 Starten
- 4 (Windows:) Datei → Einstellungen, (macOS:) Cmd-Komma, (Linux:)
- 5 In Feld "Additional Boards Manager URLs" folgenden String eintragen:
- 6 <u>http://www.dragino.com/downloads/downloads/YunShield/package_d</u> <u>ragino_yun_test_index.json</u>
- 7 (falls dort schon etwas steht, mit Komma anhängen)
- 8 Menüoption Tools \rightarrow Boards \rightarrow Boards Manager aufrufen
- 9 ins Suchfeld eingeben: Dragino
- 10 Eintrag "Dragino Yun by Dragino Technology" anklicken, Button Install erscheint
- 11 Install anklicken, Installationsbalken erscheint und verschwindet dann
- 12 Close anklicken

Einfachnode

- 1 Codebeispiel für Einfachnode: Simple_Node.ino
- 2 Sketch in Arduino IDE öffnen
- 3 Wert u1_t NWKSKEY[16] ersetzen durch Network Session Key des ersten Devices (s.o.)
- 4 Wert u1_t APPSKEY[16] ersetzen durch Network Session Key (s.o.)
- 5 Wert u4_t DEVADDR ersetzen durch Device Address (s.o.)
- 6 Ggf. Wert TX_INTERVAL auf kürzeres Intervall setzen (z.B. 10 statt

60 Sekunden)

- 7 Zeilen
- 8 LMIC_setupChannel(1, 868300000, DR_RANGE_MAP(DR_SF12, DR_SF7B), BAND_CENTI);
- 9 mit Kanalnummern von 1 bis 8 auskommentieren, nur Kanal 0 bleibt stehen.
- 10 Darunter ergänzen:
- 11 for(int i=1; i<=8; i++) LMIC_disableChannel(i);</pre>
- 12 Zeile
- 13 Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)"));
- 14 ändern zu
- 15 Serial.print(F("EV_TXCOMPLETE (includes waiting for RX windows); Frequency = "));
- 16 Serial.println(LMIC.freq);
- 17 Node mit einfachem LoRa-Shield (ohne GPS) per USB-Kabel anschließen
- 18 Tools \rightarrow Boards \rightarrow Arduino/Genuino Uno anklicken
- 19 Tools \rightarrow Port \rightarrow passenden Port anklicken (macOS: /dev/cu.wchusbserial...)
- 20 Tools → Serial Monitor öffnen, 115200 Bd einstellen
- 21 Sketch \rightarrow Upload anklicken
- 22 Node sendet Pakete
- 23 Kontrolle 1: Serial Monitor: Ausgabe: Packet queued ... EV_TXCOMPLETE (includes waiting for RX windows)
- 24 Kontrolle 2: TTN Console → Gateways → Gateway ... → Traffic zeigt Pakete

Problem: Nicht alle Pakete werden empfangen (vgl. Sequenznummern)

Sensornode

- 1 DHT11-Bibliothek installieren:
 - 1 ZIPfile: DHTlib.zip
 - 2 ZIPfile auspacken
 - 3 Verzeichnis DHTlib verschieben nach (macOS:) ~/Documents/Arduino/libraries
 - 4 IDE neu starten
- 2 Codebeispiel für Sensornode: Temp_Node.ino
- 3 Sketch in Arduino IDE öffnen
- 4 Die beiden Schlüssel und die Deviceadresse des **ersten** Devices eintragen
- 5 Blauen Wettersensor DHT11 an den Node anschließen:
 - 1 Arduino GND schwarzes Kabel Sensor GND
 - 2 Arduino A1 weißes Kabel Sensor DATA
 - 3 Arduino 3V3 oranges Kabel Sensor VCC (Achtung, nicht an 5V anschließen!)
- 6 Node an USB anschließen

- 7 Sketch \rightarrow Upload anklicken
- 8 Node sendet Pakete
- 9 Kontrolle 1: Serial Monitor: Ausgabe: Packet queued ... EV_TXCOMPLETE (includes waiting for RX windows)
- 10 Kontrolle 2: TTN Console → Gateways → Gateway ... → Traffic zeigt Pakete
- 11 Payload Decoder einrichten: Auf der TTN Console zur Application gehen, Payload Formats anklicken
- 12 Payload Format \rightarrow Zustrom (sollte voreingestellt sein)
- 13 Decoder anklicken
- 14 JavaScript-Code einfügen
- 15 save payload functions anklicken

Trackingnode

- 1 TinyGPS-Bibliothek in Arduino IDE installieren:
 - 1 ZIPfile: TinyGPS13.zip
 - 2 ZIPfile auspacken
 - 3 Verzeichnis TinyGPS-13 verschieben nach (macOS:) ~/Documents/Arduino/libraries
 - 4 IDE neu starten
- 2 Codebeispiel für Trackingnode: TempTrack_Node.ino
- 3 Sketch in Arduino IDE öffnen
- 4 Die beiden Schlüssel und die Deviceadresse des **zweiten** Devices eintragen
- 5 Blauen Wettersensor DHT11 an den Node anschließen:
 - 1 Arduino GND schwarzes Kabel Sensor GND
 - 2 Arduino A1 weißes Kabel Sensor DATA
 - 3 Arduino 3V3 oranges Kabel Sensor VCC (Achtung, nicht an 5V anschließen!)
- 6 Die beiden GPS-Jumper GPS_RX und GPS_TX umsetzen von rechts (.##) nach links (##.)
- 7 GPS-Datenkabel verbinden:
 1 Arduino-GPS-Shield GPS_RX (1.Pin) grünes Kabel Arduino A2
 2 Arduino-GPS-Shield GPS_TX (1.Pin) gelbes Kabel Arduino A3
- 8 Node an USB anschließen
- 9 Sketch \rightarrow Upload anklicken
- 10 Node sendet Pakete; wenn die grüne LED im Sekundentakt blinkt, besteht GPS-Empfang
- 11 Kontrolle 1: Serial Monitor: Ausgabe: Packet queued ... EV_TXCOMPLETE (includes waiting for RX windows)
- 12 Kontrolle 2: TTN Console \rightarrow Gateways \rightarrow Gateway ... \rightarrow Traffic zeigt Pakete, Payload Decoder liefert Koordinaten

TTN Mapper einrichten

1 Console: Applikation aufrufen, Integrations

- 2 Add Integration \rightarrow TTN Mapper
 - 1 Process ID \rightarrow z.B. maptest
 - 2 E-mail address \rightarrow (Mailadresse eingeben)
 - 3 Port filter \rightarrow z.B. 3 für den Beispielcode
 - 4 Experiment name \rightarrow (leer lassen)
 - 5 Add integration anklicken
- 3 Im Browser <u>https://ttnmapper.org/special_maps.php</u> aufrufen
- 4 Device ID des Tracking-Nodes eintragen
- 5 View map anklicken
- 6 Karte mit Mapping-Daten wird aufgelegt

Tracking-Sensornode

- 1 DHT11-Sensor vom anderen Node umbauen auf den GPS-Node (gleiche Anschlüsse)
- 2 Code überprüfen und hochladen
- 3 Kontrolle 1: Serial Monitor: Ausgaben mit Luftdaten und Koordinaten
- 4 Kontrolle 2: TTN Console → Gateways → Gateway ... → Traffic zeigt Pakete, Payload Decoder liefert Luftdaten und Koordinaten

Datenauswertung

- 1 Voraussetzung: Server mit Node-RED ist eingerichtet
- 2 TTN Console → Overview → ACCESS KEYS → default key: Kopier-Icon anklicken
- 3 Kommandozeile:
 - 1 Aufruf
 - 2 mosquitto_sub -v -h eu.thethings.network -t
 - "eltn-test/devices/+/up" -u eltn-test -P (Access Key)
 - 3 Kontrolle: Aufgabe von Topic sowie Paketdaten (als JSON)
- 4 Node-RED
 - 1 Node-RED-Oberfläche im Browser aufrufen
 - 2 ggf. neuen Flow-Tab anlegen
 - 3 Node input \rightarrow mqtt auf Flow ziehen, doppelklicken
 - 4 Server \rightarrow Add new mqtt broker... \rightarrow Stift-Icon
 - 1 Name \rightarrow TTN ELTN
 - 2 Connection
 - 1 Server \rightarrow eu.thethings.network
 - 3 Security
 - 1 Username \rightarrow eltn-test
 - 2 Password \rightarrow default access key wie oben kopiert
 - 4 Add anklicken
 - 5 Topic \rightarrow # oder eltn-test/devices/+/up
 - 6 Done anklicken
 - 7 Test (Debugausgabe)
 - 1 Node Output \rightarrow debug auf Flow ziehen
 - 2 mqtt-Node mit debug-Node verbinden

- 3 Deploy anklicken
- 4 Debug anklicken, auf nächste Message warten
- 5 Kontrolle: JSON-Datensatz und alle einzelnen Felder (bei Topic #) werden ausgegeben
- 8 Kartendarstellung:
 - 1 Node function \rightarrow json
 - 1 Action \rightarrow Always convert to JavaScript Object
 - 2 Property \rightarrow msg.payload
 - 2 Node function \rightarrow change, Regeln:
 - 1 Set msg.dev_id to JSONata payload.dev_id
 - 2 Set msg.payload to JSONata payload.payload_fields
 - 3 Set msg.payload.lat to JSONata payload.latitude
 - 4 Set msg.payload.lon to JSONata payload.longitude
 - 5 Set msg.payload.name to JSONata dev_id
 - 3 Node location \rightarrow world map
 - 4 Nodes verbinden: mqtt \rightarrow json \rightarrow change \rightarrow world map
 - 5 Deploy
 - 6 Karte mit ctrl-shift-M aufrufen